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1. INTRODUCTION

The advantages of "nite element methods and transfer matrix methods have
prompted researchers [1}4] to combine the two methods for dynamic analysis of
chain-like structures. But in all these studies [1}4], the inertia e!ects were included
in the "nite element formulation. This has the disadvantage that the sti!ness
matrices are recomputed for every trial value of frequency when a trial and error
search is used to determine eigenvalues. The approach presented in this paper
proposes explicit formulation of elastic and mass matrices that are independent of
each other. It follows that the elastic transfer matrix includes only the elastic
properties of the substructure. Inertia forces and moments are introduced at the
node points between the elastic transfer matrices by approximating distributed
mass properties using a mass transfer matrix with concentrated mass, as is usually
done in a one-dimensional transfer matrix method. The approach is demonstrated
in this paper for the free vibration analysis of a triangular plate. Extension to
analyze other complex structures is straightforward.

2. THEORY

Consider a structure which is divided into n substructures (see Figure 1(a)). The
present approach assumes these substructures to be massless elastic bodies which
are further discretized into "nite elements. The mass of a substructure is lumped at
its left and right boundaries. The elastic and mass transfer matrices for each
substructure are developed independently of each other. This procedure is outlined
as follows.

An assembled elastic matrix [E
i
] for an ith substructure (shown in Figure 1(a))

can be formulated using the "nite element method and can be written as [E
i
]

MdN"MFN. Since MdN and MFN are composed of displacements and forces on the (i)th
and (i@)th boundaries. the above equation can be rewritten as
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Figure 1. (a) A structure divided into n substructures, (b) a triangular cantilevered plate.
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The forces on the right hand side of the above equation can brought to the left
hand side and the elastic matrix can be rearranged and partitioned as

CE1
E
2E

3
E
4D G

d
iF
i

2

d
i@F
i@
H"M0N. (2)

Equation (2) is partitioned so that [E
1
] is a square matrix and the top partition

consists of as many equations as there are variables on the (i)th boundary. The
upper partition of equation (2) can be solved for the state vector on the (i)th
boundary to give
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and can be substituted into remaining equations in the lower partition of equation
(2) to yield
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In the above equation, [K
i
] is the elastic transfer matrix for the ith substructure.

The zero elements in the state vector on the left-hand side of equation (4) result
when there are an unequal number of nodes on the left and the right boundaries of
the substructure. The subscript of the parentheses, i.e., (i) or (i@), identi"es the station
or the boundary. It may be noted here that equation (3) requires inversion of
a matrix [E

1
], which, in some cases may be singular. This problem can usually

be overcome by interchanging rows, as their arrangement is arbitrary. Most
important, the elastic transfer matrix [K

i
] developed above is independent of the

trial frequency, hence avoiding the unnecessary calculation of elastic matrices for
every trial value of the natural frequency.
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The mass of the substructure is assumed to be lumped at the substructure
interface (see Figure 1(a)) and the state vectors of the two adjacent substructures are
related by the in#uence of a mass transfer matrix, [M

i
] [5]. For example, the mass

matrix between the (i@!1)th and the (i!1)th stations can be written as
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[7mu2W] F [I]D (5)

Here, u is the vibratory frequency and m are the lumped masses which account
for the mass of the surrounding elements of the adjacent substructures. For bending
cases, [M

i
] could have additional terms representing the rotational mass moment

of inertia.
Equations (4) and (5) formulated the elastic and mass transfer matrices, respec-

tively, for any ith substructure. These equations can be combined to satisfy
equilibrium and continuity conditions at (i@)th and (i@!1)th stations to give the
following relationship between (i)th and (i!1)th stations:
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Similarly, we can formulate the elastic and mass transfer matrices of all the
n substructures and successively substitute for intermediate state vectors to obtain
a matrix which relates the state vector at the (n)th boundary to that at the (0)th
boundary of the entire structure. This will appear as
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where [D] is the matrix product [K
n
][M

n
]2[K
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][M
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1
]. Applying

boundary conditions at the (0)th and (n)th boundaries yields the characteristic
equation

[DM ]M;N
0
"M0N, (8)

where vector M;N
0

is a vector of the unknown displacements and forces, and [D1 ],
which is a submatrix of [D], is a function of the natural frequencies of the entire
structure. The correct natural frequencies are those at which the determinant of
matrix [DM ] vanishes. A numerical example which demonstrates this approach is
considered next.

3. NUMERICAL EXAMPLE

The example considered here is a #at, cantilevered, triangular plate shown
in Figure 1 (b). The material and geometric properties are: Young's
modulus"2)07]1011Pa mass density"7850 kg/m3. Possion's ratio"0)3, isos-
celes side length"0)254 m, and plate thickness"1)55]10~3m. The experimental
value of the fundamental frequency given by Gustafson [6] is 34)5 Hz. Bathe and
his colleagues [7] applied the standard "nite element method based on the discrete



TABLE 1

A comparison of the present FE-¹M method results with previous studies and
ABAQ;S for the case of a -at triangular cantilevered plate (Figure 1(b))

No. of
segments/side

No. of
elements

Mass d.o.f. Fundamental frequency (Hz)

Present study
dggggeggggf

Previous studies ABAQUS FE-TMM

1 1 1 - 17)77 17)76
2 4 3 - 28)98 29)03
3 9 6 - 32)91 32)94
4 16 10 34)5 [7] 34)49 34)49
5 25 15 35)1 [4] 35)25 35)46

Experimental * * 34)5 [6] * *
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Kirchho! theory using a mesh with four segments per side. The value of the "rst
natural frequency obtained was also 34)5 Hz. Chang [4] obtained a value of
35)1 Hz for this case, with "ve equal segments per side, using a combined Finite
Element-Transfer Matrix (FE-TM) method. He used a distributed mass model with
inertial matrices embedded in the "nite element elastic formulation.

For the present study, "ve cases with increasing number of substructures were
studied. For the "rst case, the plate structure was modeled as a single substructure;
for the second case the structure is divided into two substructures and so on. Each
substructure was further discretized into triangular elements such that the plate has
an equal number of segments per side. A three-node plate element [8] was used to
formulate the element elastic matrices for each substructure. A lumped mass
representation as shown in Figure 1(a) was used. The mass of each substructure was
assumed to be concentrated at the substructure interfaces only. The nodal mass
m in the mass transfer matrix was calculated as m"1

3
m

t
, where m

t
is the total mass

of all the triangular elements connected to that node. Table 1 shows agreement
between the frequencies calculated using the present FE-TM method with those
from previous studies [4, 6, 7] and ABAQUS results. The frequency initially in-
creases when the number of substructures is increased and then converges to
34)5 Hz. This e!ect is attributed to an increase in sti!ness due to an increase in
number of boundary nodes at the "xed edge.

4. CONCLUDING REMARKS

The present approach, a variation of the combined FE-TM method has shown
satisfactory results for the fundamental natural frequency of a plate structure. The
method can be used to extract higher frequencies and mode shapes [9]. This
approach di!ers from the earlier versions of the FE-TM method in which it allows
the formulation of mass and sti!ness properties of a substructure as separate
transfer matrices which can be stored as separate databases. The sti!ness matrix for
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each substructure need only be calculated and stored once. During the root "nding
process, only the mass matrices need be recalculated, as only they are functions of
the natural frequencies of the structure or of the trial frequencies used in the search
procedure. Hence, using an explicit form for the mass matrices avoids repetitive
computations. Storing data in separate databases can also facilitate the evaluation
of speci"c design changes in a design optimization procedure. For example, partial
transfers with assumed trial frequencies can be stored separately for the di!erent
substructures or components of complex structures, thereby making for very
e$cient calculation of dynamic characteristics associated with design changes
(namely, geometric or material properties). Besides its potential for application in
design optimization procedures, this approach can also be viewed as a reduction
technique. Since the size of the characteristic matrix depends only on the number of
the boundary nodes of the structure, an automatic reduction in the size of the "nal
characteristic matrix is achieved. For example, for the "fth case of the cantilevered
plate problem, the size of the characteristic matrix [DM ] is 18]18 as opposed to
45]45, if a standard "nite element method is used. The computational e$ciency
and numerical accuracy aspects of the present approach are discussed in reference
[9] and will be presented in subsequent publications.
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